Noncommutative Generalizations of Theorems of Cohen and Kaplansky
نویسنده
چکیده
This paper investigates situations where a property of a ring can be tested on a set of “prime right ideals.” Generalizing theorems of Cohen and Kaplansky, we show that every right ideal of a ring is finitely generated (resp. principal) iff every “prime right ideal” is finitely generated (resp. principal), where the phrase “prime right ideal” can be interpreted in one of many different ways. We also use our methods to show that other properties can be tested on special sets of right ideals, such as the right artinian property and various homological properties. Applying these methods, we prove the following noncommutative generalization of a result of Kaplansky: a (left and right) noetherian ring is a principal right ideal ring iff all of its maximal right ideals are principal. A counterexample shows that the left noetherian hypothesis cannot be dropped. Finally, we compare our results to earlier generalizations of Cohen’s and Kaplansky’s theorems in the literature.
منابع مشابه
Simultaneous generalizations of known fixed point theorems for a Meir-Keeler type condition with applications
In this paper, we first establish a new fixed point theorem for a Meir-Keeler type condition. As an application, we derive a simultaneous generalization of Banach contraction principle, Kannan's fixed point theorem, Chatterjea's fixed point theorem and other fixed point theorems. Some new fixed point theorems are also obtained.
متن کاملGeneralizations of the Skew t-Normal Distribution and their Properties
In this paper we consider several generalizations of the skew t-normal distribution, and some of their properties. Also, we represent several theorems for constructing each generalized skew t-normal distribution. Next, we illustrate the application of the proposed distribution studying the ratio of two heavy metals, Nickel and Vanadium, associated with crude oil in Shadgan wetland in the south-...
متن کاملStrong Topological Regularity and Weak Regularity of Banach Algebras
In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...
متن کاملOn the fixed point theorems in generalized weakly contractive mappings on partial metric spaces
In this paper, we prove a fixed point theorem for a pair of generalized weakly contractive mappings in complete partial metric spaces. The theorems presented are generalizations of very recent fixed point theorems due to Abdeljawad, Karapinar and Tas. To emphasize the very general nature of these results, we illustrate an example.
متن کاملFixed Point Theorems For Weak Contractions in Dualistic Partial Metric Spaces
In this paper, we describe some topological properties of dualistic partial metric spaces and establish some fixed point theorems for weak contraction mappings of rational type defined on dual partial metric spaces. These results are generalizations of some existing results in the literature. Moreover, we present examples to illustrate our result.
متن کامل